Tàu hỏa chạy qua một đường ngầm, khói bay vào toa làm một số hành khách bị nhọ mặt. Vì trong toa không có gương và trong suốt cuộc hành trình hành khách không nói chuyện với nhau nên không ai biết mặt mình có bị nhọ hay không. Người kiểm vé đi qua thấy vậy nói: “Rất tiếc, một số hành khách trong toa đã bị nhọ mặt. Chỉ những hành khách bị nhọ mới được rửa mặt và phải rửa vào lúc tàu dừng ở các ga”. Sau lần đỗ thứ tư thì trên toa mới không còn hành khách bị nhỏ (sau lần đỗ thứ ba vẫn còn). Hỏi trong toa có bao nhiêu người bị nhọ và những người bị nhọ đã suy luận thế nào để biết được mình bị nhọ? Hãy giải bài toán với những điều kiện sau:
a) Hành khách chỉ đi rửa khi biết chắc chắn mình bị nhọ và đi rửa ngay sau khi tàu dừng.
b) Khi tàu dừng, ở chỗ rửa bao nhiêu người rửa cũng được.
c) Từ quan sát, nói chung các hành khách đều biết suy đoán đúng.
Ta lần lượt xét các khả năng có thể như sau:
a) Giả sử trong toa chỉ có 1 người nhọ mặt: Người bị nhọ tìm khắp trong toa không thấy ai bị nhọ nên biết ngay là mình bị nhọ và đi rửa ngay lần tàu đứng đầu tiên. Vậy số người bị nhọ phải nhiều hơn 1.
b) Giả sử trong toa có 2 người bị nhọ mặt: Mỗi người bị nhọ đều nhìn thấy một người bị nhọ, vì thế lần tàu dừng thứ nhất không có ai đi rửa cả. Sau đó cả hai đều phát hiện ra mình bị nhọ (vì nếu mình không, anh kia đã đi rửa ở lần tàu dừng đầu tiên rồi) và cả hai đều đi rửa ở lần tàu dừng thứ hai. Vậy số người bị nhọ lớn hơn 2.
c) Giả sử trong toa có 3 người bị nhọ: Mỗi người bị nhọ đều nhìn thấy 2 người bị nhọ. Vì biết suy đoán đúng nên đều chờ xem 2 người kia có đi rửa ở lần tàu dừng thứ 2 hay không. Khi thấy 2 người kia đều không đi rửa, cả 3 đều phát hiện ra mình bị nhọ và đi rửa ở lần tàu dừng thứ ba.
d) Giả sử trong toa có 4 người bị nhọ mặt: Lập luận tương tự như trường hợp C, suy ra cả 4 người đều bị nhọ đều đi rửa ở lần tàu dừng thứ tư. Giả thiết bài toán sau lần tàu dừng thứ tư mới hết người bị nhọ. Vậy trong toa có 4 người bị nhọ.
Câu đố trí tuệ.